
Least squares solutions of linear inequality systems: a pedestrian approach

Luis Contesse1, Jean-Baptiste Hiriart-Urruty2, Jean-Paul Penot3

“De tous les principes qu’on peut proposer pour cet objet, je pense qu’il n’en est pas de
plus général, de plus exact, ni d’une application plus facile que celui qui consiste à rendre
minimum la somme des carrés des erreurs”

“Of all the principles that can be proposed, I think there is none more general, more
exact, and more easy of application, than that which consists of minimizing the sum of the
squares of the errors”

A.-M.Legendre, Nouvelles méthodes pour la détermination des orbites des comètes,
Paris (1805).

Abstract. With the help of elementary results and techniques from Real Analysis and
Optimization at the undergraduate level, we study least squares solutions of linear inequal-
ity systems. We prove existence of solutions in various ways, provide a characterization
of solutions in terms of nonlinear systems, and illustrate the applicability of results as a
mathematical tool for checking the consistency of a system of linear inequalities and for
proving “theorems of alternative” like the one by Gordan. Since a linear equality is the
conjunction of two linear inequalities, the proposed results cover and extend what is known
in the classical context of least squares solutions of linear equality systems.
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1. Introduction

The linear least squares problem is a mathematical and computational problem of
primary importance, which originally arose from the need to fit a linear mathematical
model to given observations. This corresponds to multiple observations, represented by
the rows of A and b, on a vector x. The observations may be inconsistent, and in this
case a “solution” is sought. In mathematical terms, the resulting problem is to “solve” an
overdetermined linear system of equations: given a vector b ∈ Rm and a m× n matrix A,
with m > n, knowing that the system Ax = b has no solution, we want to find a vector
x ∈ Rn such that Ax is the “best” approximation to b. But it remains the essential: to
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define what is the “best” solution. A choice which can be motivated for various reasons,
including numerical and statistical ones, is to look for x solving the following minimization
problem:

Minimize g(x) =
1

2
‖Ax− b‖2 over Rn, (P)

where ‖.‖ stands for the usual Euclidean norm in Rn. The coefficient 1/2 is there just to
avoid trailing 2 in calculations dealing with differential calculus on g, and squaring the
Euclidean norm “smoothes” the considered objective function (which is not necessarily the
case for an arbitrary other norm in Rn). The terminology “least squares” speaks for itself:

we want to have the sum of squares
m∑
i=1

(aTi x − bi)2, where the ai ’s are rows of A and bi

the components of b, as small as possible. This is the classical situation, well-understood
from the mathematical and numerical viewpoints, see for example the book [1]. We shall
recall some basics facts about it in the next section, as an appetizer for the more general
case of inequalities. Motivated by not only applications but also mathematics, we move
from the realm of “bilateral analysis” to that of “unilateral analysis”4, that is from that of
mere linear equalities to that of linear inequalities. Consider therefore a system of linear
inequalities in Rn

aTi x 6 bi for i = 1, 2, ...,m (S)

where ai ∈ Rn, bi ∈ R. In a packed form, we write (S) as Ax 6 b 5. Suppose that (S) is
infeasible, that is to say there is no x satisfying all the inequalities in (S). We are interested
in “solving” (S) in the best way. For that, we propose to tackle the following problem:

Minimize f(x) =
1

2
‖(Ax− b)+‖2 =

1

2

m∑
i=1

(
aTi x− bi

)2
+

over Rn, (Q)

where r+ stands for the positive part of r, i.e., r+ = max(r, 0). Like in the equality case
where the residual to the aimed equality aTi x − bi = 0 was

∣∣aTi x− bi∣∣, the residual to the
aimed inequality aTi x 6 bi (or aTi x−bi 6 0) is

(
aTi x− bi

)
+

. So, it is natural, for solutions of

(Q), to speak of least squares solutions to linear inequalities (S). The situation is however
more complicated than in the equality case, to begin with: has problem (Q) solutions? No
theorem in Analysis allows us to answer immediately. Could we characterize the solutions
of (Q) as in the equality case (where the solutions are characterized as solutions of a linear
system)? We thereafter plan to get down to answering these questions. We do not forget
that an equality aTi x = bi amounts to two inequalities aTi x 6 bi and −aTi x 6 −bi, with

(aTi x − bi)
2 =

(
aTi x− bi

)2
+

+
(
−aTi x+ bi

)2
+

; hence our results should cover the classical
case of least squares solutions of linear equalities. To the best of our knowledge, the least
squares problems for linear inequalities were firstly considered by Han in [4], in a research
report somewhat difficult to obtain. We shall explain below what is contained there, at
least concerning existence results. But, let us begin with some appetizers.

4a terminology coined by J.J.Moreau (1923-2014) to explain the development of his thoughts from
Bilateral analysis to One-sided analysis, or from Linear analysis to Convex analysis.

5Here and elsewhere the inequalities between vectors are meant componentwise.
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2. Two appetizers

2.1 A brief account on least squares solutions for equality systems. We recall
here some basic facts on the existence, uniqueness and characterization of solutions in the
classical case of equality systems. The objective function g in (P) can be developed as

g(x) =
1

2
xT (ATA)x− xTAT b+

1

2
‖b‖2 . (1)

Hence, g is a nice quadratic convex function on Rn, whose gradient ∇g(x) at x ∈ Rn is
expressed as follows

∇g(x) = (ATA)x− AT b (2)

= AT (Ax− b).

Since x is a minimizer of g on Rn if and only if ∇g(x) = 0, we have at least two ways of
proving the existence of solutions in (P).

- Existence of solutions in (P). Firstly by using Linear algebra or Matrix analysis.
Clearly, (P) is equivalent to

Minimize
1

2
‖v − b‖2 over all v ∈ Im(A),

whence (P) is the problem of projecting b on the vector subspace Im(A). Another way to
look at this existence question is as follows. The n×n matrix ATA is positive semidefinite
with:

Ker(ATA) = Ker(A) ; Im(AT ) = Im(ATA). (3)

Hence the equation ∇g(x) = 0, that is to say

(ATA)x = AT b, (4)

also called “normal equations”, does have solutions.
Secondly, by using Analysis and Optimization. When ATA is positive definite, the

continuous function g enjoys the so-called coercivity condition on Rn, that is to say

g(x)→ +∞ as ‖x‖ → +∞.

So, minimizing g on Rn amounts to minimizing it on some closed ball B(0, R) for R > 0
large enough. By Weierstrass theorem, we therefore are assured that a minimizer of g
exists. When ATA is just positive semidefinite, one has to rely on the coercivity of g on
a supplementary vector space of Ker(ATA). In a single shot, one could use the following
interesting result on unconstrained minimization of quadratic functions on Rn:

Let B ∈ Sn(R), v ∈ Rn, and

q : x ∈ Rn 7→ q(x) =
1

2
xTBx− vTx.
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Then the next three statements are equivalent:
(i) The function q is bounded from below on Rn;
(ii) B is positive semidefinite and v ∈ ImB;
(iii) The problem of minimizing q over Rn has a solution.
Here, B = ATA and, by definition, the quadratic function g is nonnegative on Rn.
- Uniqueness of solutions in (P) Again here, we have two ways of answering the question

of uniqueness. Equation (4) has a unique solution if and only if ATA is invertible, that is
to say is positive definite. That happens exactly when Ker(ATA) = {0}. So, following the
first part of (3), a necessary and sufficient condition for the uniqueness of solutions in (P)
is

Ker(A) = {0} . (5)

Note that this condition concerns only the matrix A, it is independent of the vector b. In the
case when this condition for uniqueness does not hold, the solution set of (P) is an affine
space of the form x0+ Ker(A), where x0 is an arbitrary solution of (P). Consequently,
even when there are several solutions x, the “residual vector” Ax− b remains constant.

- Characterization of solutions in (P) As explained before, the solutions of (P) are
characterized by equation (4) For the numerical solution of (P), there is a whole bunch of
techniques specifically tailored for it, see [1].

2.2 Least squares solutions for inequality systems: the first drawbacks. Con-
sider problem (Q).We show here what are the properties similar to those in (P) and, with
the help of examples, what is completely different for that problem.

- The objective function in (Q). The objective function f in (Q) can be viewed as∑m
i=1 (r ◦ hi), where hi : Rn → R is the affine function defined by hi(x) = aTi x− bi, and r :

R → R is the increasing differentiable convex function defined by r(t) = 1/2 (t+)2. So, f
is a differentiable convex function with gradient

∇f(x) =
m∑
i=1

(
aTi x− bi

)
+
ai = AT (Ax− b)+. (6)

We therefore are immediately faced with the following problems: contrary to g, the ob-
jective function f to be minimized is no more quadratic and, possibly, not coercive on
Rn ; equation (6) is no more linear... So, the results and techniques used in the previous
subsection do not apply at all here. The specific question of existence will be considered
in detail in the next section.

- Characterization of solutions in (Q). Since we deal with a differentiable convex func-
tion, x is a minimizer of f on Rn if and only if ∇f(x) = 0. So, the solutions in (Q) are
characterized by

AT (Ax− b)+ = 0, (7)

which we can also call normal equations. Unfortunately, due to the presence of the (.)+
operation, the parts involving x and b cannot be separated like in (4). Note that f is of
class C1 on Rn but not of class C2. The gradient of f is however Lipschitz on Rn,

‖∇f(x)−∇f(y)‖ 6 K ‖x− y‖ for all x, y in Rn, (8)
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where a possible Lipschitz constant K is, for example, ‖A‖2 for some ad hoc matricial
norm ‖.‖ .

- Some examples.
Example 2.2.1. Let n = 2,m = 3,

A =

 1 0
−1 0
0 1

 , b =

 −1
−1
1

 .

Here, the least squares solutions for the inequality system Ax 6 b is the half-line {0} ×
(−∞, 1] of R2. We see in this example that Ker(A) = {0} but that the solution set
in unbounded... Indeed, if x is a solution of (Q), any element of x+ Ker(A) is also a
solution of (Q) (this is clear from the characterization (7)). So, to have Ker(A) = {0} is a
necessary condition to have uniqueness of solutions in (Q), but it is not sufficient. That is
an important difference with the classical case of equalities.

Example 2.2.2. Let n = 2,m = 4,

A =


1 0
−1 0
0 −1
0 1

 , b =


−1
−1
−1
−1

 .

Here there is only one solution to the least squares problem for the inequality system
Ax 6 b, it is the origin (0, 0).

Example 2.2.3. Suppose that the vector inequality Ax 6 b is consistent, that is to say,
there are points in Rn satisfying

aTi x 6 bi for i = 1, 2, ...,m (9)

a situation that could happen more likely than in the case of equalties. Then, clearly, the
set of points satisfying (9) is the solution set of the least squares problem for Ax 6 b.
So, and that is again a difference with the classical case of equalities, any closed convex
polyhedron in Rn can be a solution set for a least squares problem with inequalities.

3. Tackling the question of existence of solutions

As explained at the beginning of Section 2.2, none of the usual results from Analysis or
Linear algebra leads us to an existence result in problem (Q). We have to adapt techniques
to this specific problem, that is what we shall do in various ways. For each proof, we shall
say at the beginning what are the mathematical tools to be used.

First proof. It uses elementary techniques from Analysis (like extracting converging
subsequences from bounded sequences) and Linear algebra (like V ∩V ⊥ = {0} for a vector
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space). Since f is bounded from below (by 0 for example), we can consider its lower bound
f = infx∈Rn f(x) and a minimizing sequence, that is a sequence (xk) such that (f(xk))
converges to f as k → +∞. If f(xk0) = 0 for some integer k0, i.e. if aTi xk0 − bi 6 0 for
all i = 1, ...,m, then we are done: xk0 is a solution of problem (Q). If not, by taking
a subsequence if necessary, noted (xk) again, we can suppose that the nonempty sets of
indices

Ik =
{
i : aTi xk − bi > 0

}
(10)

do not depend on k. We therefore denote by I this common set of indices (defined in (10)).
First case: (xk) is bounded. Then there exists a subsequence (xkl) of (xk) converging

to x as l→ +∞. As a consequence,

f(xkl)→ f and f(xkl)→ f(x) as l→ +∞,

thus f(x) = f and x is a solution to (Q).
Second case: (xk) is not bounded. Again by extracting subsequences, still denoted (xk),

we can suppose that:

f(xk)→ f , ‖xk‖ → +∞ and
xk
‖xk‖

→ u (unit vector of Rn) as k → +∞. (11)

We then have

1

2

∑
i∈I

(
aTi u

)2
= lim

k→+∞

1

2

∑
i∈I

(
aTi

xk
‖xk‖

− bi
‖xk‖

)2

= lim
k→+∞

1

2 ‖xk‖2
m∑
i=1

(
aTi xk − bi

)2
+

= lim
k→+∞

f(xk)

‖xk‖2
= 0.

Hence aTi u = 0 for all i ∈ I. We set

V =
{
v ∈ Rn : aTi v = 0 for all i ∈ I

}
.

We now decompose xk as xk = yk + zk, with yk ∈ V and zk ∈ V ⊥. By definitions of V and
V ⊥, we have

aTi xk = aTi zk for all i ∈ I and all k, (12)

f(zk) = f(xk)→ f as k → +∞. (13)

Now, the sequence (zk) ⊂ V ⊥ will play the role played by the sequence (xk) in the first
part of the proof.

First possibility: (zk) is bounded. There then exists a subsequence (zkl) of (zk) con-
verging to z as l→ +∞. As a consequence,

f(zkl)→ f and f(zkl)→ f(z) as l→ +∞,

thus f(z) = f .
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Second possibility: (zk) is not bounded. Again by extracting subsequences, still denoted
(zk), we can suppose that:

f(zk)→ f , ‖zk‖ → +∞ and
zk
‖xk‖

→ w (unit vector of V ⊥) as k → +∞. (14)

We have used above the property that V ⊥ is closed. Mimicking what we did above for the
sequence (xk), we observe that

1

2

∑
i∈I

(
aTi w

)2
= lim

k→+∞

1

2

∑
i∈I

(
aTi

zk
‖zk‖

− bi
‖zk‖

)2

= lim
k→+∞

1

2 ‖zk‖2
m∑
i=1

(
aTi zk − bi

)2
+

= lim
k→+∞

f(zk)

‖zk‖2
= 0.

Hence aTi w = 0 for all i ∈ I, that is: w ∈ V . But, since V ∩ V ⊥ = {0}, the unit vector w
cannot belong to both V and V ⊥. So, this second possibility actually does not occur, the
first one is in force and we are done.

Second proof. This proof is of a more advanced level, as it requires to know some
Analysis on convex sets, like the theorem asserting the existence and uniqueness of the
projection on a closed convex set. Let K denote the closed convex cone of Rm consisting of
vectors u = (u1, ..., um) whose components are all nonnegative. In the same manner, −K
is the closed convex cone of Rm consisting of vectors u = (u1, ..., um) whose components
are all nonpositive. Working with theses cones is fairly easy, especially concerning the
projections on them and the distances to them. When u = (u1, ..., um) ∈ Rm, we denote
by u+ = (u+1 , ..., u

+
m) and u− = (u−1 , ..., u

−
m) the two vectors with the following components

respectively:
u+i = max(ui, 0);u−i = min(ui, 0).6

Thus, u+ ∈ K, u− ∈ −K, u = u+ + u− and the two vectors u+ and u− are orthogonal.
Actually, u+ is the orthogonal projection of u on K, while u− is the orthogonal projection
of u on −K. This helps to calculate the squares of the distances of u to −K and to K:

d2(u,−K) =
m∑
i=1

(
u+i
)2

; d2(u,K) =
m∑
i=1

(
u−i
)2
.

Our initial problem consisted in minimizing f(x) = 1
2
d2(Ax− b,−K) over all the x ∈ Rn :

Minimize f(x) =
1

2
d2(Ax− b,−K) over Rn. (Q)

According to the definition of the distance d(.,−K) to −K, this can be transformed into

Minimize
1

2
‖Ax− b− u‖2 over all x ∈ Rn and u ∈ −K. (Q′)

6Beware that u−
i is nonpositive, it is not what is usually called the negative part of ui. To ease the

reading of symbols, we use indifferently the notations u+ and u+.
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This problem is posed in Rn × Rm, its optimal value is f (= infx∈Rn
1
2
‖(Ax− b)+‖2). We

even go a step further: problem (Q′) can be transformed into the following one:

Minimize
1

2
‖y − b− u‖2 over all y ∈ Im(A) and u ∈ −K;

Minimize
1

2
‖v − b‖2 over all v ∈ Im(A) +K. (Q′′)

This final problem (Q′′) is posed in Rm, its optimal value is still f . Before comparing the
solutions of (Q), (Q′) and (Q′′), let us treat the problem (Q′′) completely. The constraint
set Im(A) +K, sum of a linear subspace and of a polyhedral closed convex cone is convex
and closed ([5, Corollary 19.3.2]). Hence, (Q′′) consists in projecting the vector b onto
Im(A) + K; it therefore has one and only one solution b ∈ Im(A) + K. How to link the
solutions of (Q), (Q′) and (Q′′)? The construction and structure of the problems (Q), (Q′)
and (Q′′) speak by themselves:

- If x solves (Q), then (Ax− b)− is the projection of Ax− b onto −K and:

(x, (Ax− b)−) solves (Q′); (15-1)

b = b+ (Ax− b)+ = Ax− (Ax− b)− solves (Q′′). (15-2)

- If b solves (Q′′), then b expressed as Ax + u for some u ∈ K (and some x in Rn)
provides a solution x of (Q).

This way at looking at (Q) shows two things: firstly, there are solutions to (Q) ;
secondly, the “residual vector” (Ax− b)+ remains the same for all the solutions x to (Q).
We had observed the same phenomenon in the equalities case (see Section 2.1).

Third proof. This third proof is more in the lines of Optimization, it is also more
involved. It was actually the proof proposed by Han in [4, Section 2]. The main ingredient
of the proof is a strong result which states the following : if a quadratic function (convex
or not) is bounded from below on a closed convex polyhedron, then this lower bound is
attained (there exists a minimizer of the quadratic function on the polyhedron). This
result dates back to Frank and Wolfe (1956) ; see also in [5, Section 27] how it can be
derived from general results on the minimum of a convex function. The idea is to associate
with (Q) another problem (Q̂), quadratic this time, but posed in Rn × Rm, with the help
of so-called “slack” variables z ∈ Rm. Let us therefore consider

Minimizex,z
1

2
‖z‖2 subject to Ax+ z 6 b. (Q̂)

Note that P = {(x, z) : Ax+ z 6 b} is a closed convex polyhedron in Rn×Rm, but due to

the lack of term ‖x‖2 in the objective function, (Q̂) is not the problem of projecting the

origin onto P . However, with the help of Frank and Wolfe theorem quoted above, (Q̂)
does have a solution (x, z); the strict convexity of the function ‖.‖2 makes moreover that

z is unique. Now, how to link the solutions of (Q) and (Q̂)? The following relationships
come easily:

- If x solves (Q), let z = (Ax− b)+; then (x, z) solves (Q̂).
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- If (x, z) solves (Q̂), then z = (Ax−b)+ necessarily and x solves (Q). Let us summarize
the results about existence of solutions in (Q).

Theorem 1. For any matrix A and vector b, the least squares problem (Q) has a
solution x ∈ Rn. The minimal “residual” vector z = (Ax − b)+ ∈ Rm is unique, and
x ∈ Rn is a least squares solution if and only if (Ax− b)+ = z.

To end this section, let us add some words about uniqueness of solutions in (Q) and
numerical procedures to find one solution to (Q).

- Uniqueness. Contrary to the least squares problems for equality systems where things
were clear, the case of inequality systems is more difficult: we do not know of any condition
involving A and b alone (or A alone) which would be necessary and sufficient for uniqueness
of solutions in (Q). Anyway, most least squares problems in practice usually give rise to
several solutions.

- Numerical solutions. From the very beginning, han ([4, section 3]) proposed a spe-
cific algorithm to solve (Q) numerically. Variants of Han’s algorithm can be found in
[2] , [6, Part II] , [7]. However, there now are numerous algorithms to solve this uncon-
strained convex differentiable minimization problem (Q).

4. Some applications

When ai is a unit vector,
(
aTi x− bi

)2
+

is the square of the distance d(x, Si) from x to

the half-space Si =
{
x : aTi x 6 bi

}
. Trying to find a point in ∩mi=1Si is a frequent objective

in problems coming from signal and image processing (see [3] for example). However it
may happen that requirements x ∈ Si for all i be inconsistent; in that case, minimize∑m

i=1 d
2(x, Si) is a sensible alternative; this is exactly the least squares problem (Q). In

addition to those practical applications, we have in mind applications in mathematics: the
existence theorem of Section 3 can be a mathematical tool in devising proofs of results
which, a priori, have nothing to do with least squares problems. Let us illustrate that with
two examples.

4.1 A feasibility problem. Let a1, ..., am be m vectors in Rn, and let b ∈ Rm. We
consider the system of linear inequalities

aTi x 6 bi for i = 1, 2, ...,m. (S)

Question: is this system consistent? In other words: does there exist any x ∈ Rn satisfying
(S)? Not always, of course... We give here a sufficient condition for that, involving only
the ai’s, whatever be the bi’s in the right-hand side. For that, we assume the following on
the a′i s:(

m∑
i=1

λiai = 0 with λi > 0 for all i = 1, ...,m

)
⇒ (λi = 0 for all i = 1, ...,m) . (H)
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The proof is easy by using the results displayed above. If A denotes the matrix with rows
a1, ..., am, the assumption (H) says that(

ATu = 0 with u > 0
)
⇒ (u = 0) .

Hence the solutions of the optimality condition (7), AT (Ax − b)+ = 0, necessarily satisfy
(Ax− b)+ = 0. But there are x satisfying (7), they are precisely the least squares solutions
for the inequality system Ax 6 b. Whence we have proved there indeed are points x
satisfying (Ax− b)+ = 0, that is (S). A stronger assumption than (H) would be to require
m = n and the n vectors a1, ..., an linearly independent. This new assumption remains
invariant if we change ai into −ai , while (H) does not. Indeed, condition (H) is more
adapted to systems of linear inequalities than the linear independence condition.

4.2 Alternative theorems. A theorem of alternative (or transposition theorem) is a
set of two statements such that each one is false when the other is true. More precisely,
let P and Q be two logical propositions. They are said to form an alternative if one and
only one of them is true:

(P ⇒ not Q) and (not P ⇒ Q)

or, just as simply:
(P ⇔ not Q) or [(not P ⇔ Q)] .

In the whole spectrum of alternative theorems, we choose Gordan’s alternative theorem,
maybe the oldest one with propositions involving linear inequalities (1873). Let a1, ..., am
be m vectors in Rn; consider the two next statements:

(P ) : There exists x ∈ Rn such that aTi x < 0 for all i = 1, ...,m;

(Q) : There are nonnegative λi’s, not all zero, such that
m∑
i=1

λiai = 0.

Gordan’s alternative theorem expresses that (not P ⇔ Q). As usually the case in such
equivalences, one way is easy (and without much interest), the other way is more difficult
(and is the interesting part). Here, the implication (Q⇒ not P ) is easy and does not
offer much interest. The converse implication (not P ⇒ Q) is what requires more effort to
prove. We shall do that by using the existence result for least squares solutions of linear
inequality systems. Assume (not P ). For any ε > 0, the system of linear inequalities

aTi x 6 −ε for i = 1, 2, ...,m (16)

has no solution. Never mind, we consider a solution x of this system in the least squares

sense, which does exist (see Section 3). Then, according to the optimality condition (7),

m∑
i=1

(
aTi x+ ε

)
+
ai = 0.

10



We set λi =
(
aTi x+ ε

)
+

. All the λi’s are nonnegative and at least one of them is positive.

If not, that would mean that the system of inequalities (16) is consistent, which is not the
case. Whence (Q) has been proved.

5. Conclusion

In this note, we have shown how the least squares problems with inequality systems
differ from the classical ones with equality systems, especially as the question of existence
is concerned. Elementary techniques and results in mathematics have been used in the
proofs of the existence of solutions. As for applications, besides practical ones in signal
and image processing, the least squares approach for inequality systems can be used as
a mathematical tool. We have illustrated that in solving a feasibility problem and by
providing a very short proof of Gordan’s alternative theorem.
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